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Abstract. Nucleon-pole contributions in the J/ψ → NN̄π, pp̄η, pp̄η′ and pp̄ω decays are re-studied. Differ-
ent contributions due to PS-PS and PS-PV couplings in the π-N interaction and the effects of NNπ form
factors are investigated in the J/ψ → NN̄π decay channel. It is found that when the ratio of |F0|/|FM |
takes a small value, without considering the NNπ form factor, the difference between PS-PS and PS-PV
couplings is negligible. However, when the NNπ form factor is included, this difference is greatly enlarged.
The resultant decay widths are sensitive to the form factors. As a conclusion, the nucleon-pole contribution
as a background to the decay width is important in the J/ψ → NN̄π decay and must be considered. In
the J/ψ → NN̄η and NN̄η′ decays, its contribution is smaller by 0.1% with respect to the data. In the
J/ψ → NN̄ω decay, it provides a rather important contribution without considering form factors. But the
contribution is suppressed greatly when adding the off-shell form factors. Comparing these results with
data will help us to select a proper form factor for such kind of decay.

PACS. 14.20.Gk Baryon resonances with S = 0 – 13.25.Gv Decays of J/ψ, Υ , and other quarkonia –
13.66.Bc Hadron production in e−e+ interactions

1 Introduction

Nucleons, as essential building blocks of the real world,
have been studied for decades. The members of the nu-
cleon family include those which are in different excitation
modes and even with gluon contents. The nucleon spec-
trum investigation will provide us necessary information
for revealing the structure of the nucleon [1]. So far, in
terms of a variety of sources, mostly from the πN elastic-
and inelastic-scattering data, more and more information
on nucleon and its excited states have been accumulated.
However, our knowledge on the nucleon family is still far
from complete.

The development of Quantum Chromodynamics
(QCD) provides an underlying theory for the studies of
hadrons and their properties. Even so, the nucleon and
its family members still cannot strictly be derived from
QCD. The difficulty comes from two sides: the interaction
among quarks and the intrinsic structures of the nucleon
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and its family members. To solve this problem in a more
efficient way, various QCD-inspired models have been pro-
posed. As a result, many nucleon resonances (N ∗) have
been predicted.

On the experimental side, searching N ∗’s has been a
very important project in the past years. The results were
mainly extracted from the πN scattering data. Up to now,
many nucleon resonances have been found. Yet, still some
N∗ states which were predicted by widely accepted nu-
cleon models, such as quark models [2], have not been
seen in the πN channel. Do these so-called “missing res-
onances” couple weakly to the πN channel [3,4], so that
we should propose other means to search them? Or, does
the quark model predict too many resonances so that the
model itself should further be modified? Or, may there
exist the hybrid structure or the di-quark structure? All
these puzzles motivate intensive investigations on both the
experimental and the theoretical side.

In recent years, a large number of experiments on N ∗

physics have been carried out at new facilities such as CE-
BAF at JLab, ELSA at Bonn, GRAAL at Grenoble and
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Fig. 1. N∗-pole diagrams for the J/ψ →MNN̄ decay.

Fig. 2. Nucleon-pole diagrams for the J/ψ →MNN̄ decay.

SPring-8 at JASRI. Now, 58 million J/ψ events have been
collected at Beijing Electron-Positron Collider (BEPC).
The two-step decay process J/ψ → N ∗N̄ → MNN̄ ,
whereM stands for meson, can be another excellent source
for studying light-baryon resonances with many advan-
tages [5,6]. The corresponding Feynman diagrams are
shown in fig. 1. It should be mentioned that the nucleon-
pole diagrams (shown in fig. 2) could also contribute as a
background component in theN∗ study via J/ψ →MNN̄
decays. For light mesons, especially for pions, nucleon-pole
contributions might be sizable and should not be ignored.

In order to extract a more accurate and reliable con-
clusion from the J/ψ hadronic-decay data, it is necessary
to study the nucleon-pole contributions in those decay
channels. By analyzing J/ψ → pp̄π0 data, R. Sinha and
S. Okubo [7] pointed out that in the J/ψ → pp̄π0 de-
cay, the p-pole contribution dominates in the soft-pion
limit, and the N∗-pole contribution becomes important
in the large pion energy region. In the J/ψ → pp̄η and
pp̄η′ decays, if one considered the p-pole contribution only,
the extracted gηNN̄/gπNN̄ value would be much smaller
than that from the experimental decay widths of the
J/ψ → pp̄π0, pp̄η and pp̄η′ processes. Due to the fact that
the decay rates Γ (N∗ → ηN) are rather large for both
N∗(1440) and N∗(1535), the N∗-pole contribution must
govern J/ψ → pp̄η and pp̄η′ decays. In the J/ψ → pp̄ω
decay, the p-pole contribution only gives 1/10 of the ex-
perimental decay rate. Therefore, in order to obtain a re-
liable information about N∗ via J/ψ → pp̄M decays, one
should carefully consider the p-pole contribution as a part
of the background component. In this work, we calculate
the nucleon-pole contributions in the J/ψ → NN̄π, pp̄η,
pp̄η′ and pp̄ω decays with various hadronic form factors.
In general, the main purpose of this paper is to empha-
size the importance of the contribution of the nucleon-pole
diagram in studying N∗’s via various J/ψ → NN̄M pro-
cesses and to provide an indication of how big the devi-
ation would be if the vertex form factors are applied in
data analysis.

Fig. 3. Nucleon-pole diagrams for the J/ψ → πNN̄ decay.

The paper is organized in the following way: in the
next section, the nucleon-pole contributions in the J/ψ →
NN̄π, pp̄η and pp̄η′ decays with and without form factors
are systematically studied. The nucleon-pole contribution
in the J/ψ → NN̄ω decay is demonstrated in sect. 3, and
in sect. 4, the conclusions are drawn.

2 Nucleon-pole contributions in the

J/ψ → NN̄π, pp̄η and pp̄η′ decays

Firstly, we take the J/ψ → NN̄π channel as a sample
to analyze cautiously the off-shell effect through different
NNπ couplings and various form factors. And then, we
discuss the results in the J/ψ → NN̄η and NN̄η′ chan-
nels.

2.1 Nucleon-pole contributions by using different NNπ
couplings in the J/ψ → NN̄π decay

The nucleon-pole diagrams for J/ψ → πNN̄ are shown in
fig. 3, with q = p+ k = Pψ − p′ and q′ = p′ + k = Pψ − p.
In the case of very low energy of the pion, the dominant
contribution to the J/ψ → NN̄π decay comes from the
nucleon-pole diagram. However, when the energy of the
pion becomes greater, the contribution of the nucleon-
pole diagram is evidently greater than in the experimental
data. Thus, the off-shell effect of the nucleon propagator
should be carefully studied. Generally, the J/ψ → NN̄
interaction can be written as

Hψ = N̄

[

FMγ
µ +

1

2m
F0
(

p− p′
)µ
]

N εµ(Pψ), (1)

where m is the mass of the nucleon, Pψ, p and p′ are
the four-momenta of J/ψ, N and N̄ , respectively, and
εµ(Pψ) denotes the polarization vector of J/ψ. Dimension-
less real decay constants FM and F0 can be determined by
the experimental data of the two-body decay J/ψ → pp̄.
There are two forms for pion-nucleon interaction which are
widely employed in the literatures. One is in pseudoscalar-
pseudoscalar (PS-PS) form:

H1 = igNN̄πN̄γ5~τN~π, (2)

and the other is in pseudoscalar-pseudovector (PS-PV)
form:

H ′
1 =

1

2m
gNN̄πN̄γ5γµ~τN∂

µ~π, (3)
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Fig. 4. Diagrammatic expressions of eq. (8) for the upper-row diagrams and of eq. (9) for the lower-row diagrams, respectively.

where ~τ is the isospin Pauli matrix, and gNN̄π is the pion-
nucleon coupling constant with [7]

(gNN̄π)
2/4π ' 14.8. (4)

When the intermediate nucleon is on-shell, the decay
amplitude of fig. 3 in the PS-PS coupling π-N interaction
can be derived as

Mon
PS = igNN̄πū(p)γ5

[

FM

(

/k /ε

2p · k+k2−
/ε /k

2p′ · k+k2
)

+
F0
m

/k

(

p · ε
2p′ · k+k2−

p′ · ε
2p · k+k2

)]

v
(

p′
)

(5)

≡ MPS.

It also can easily be proved that the decay amplitude in
the PS-PV coupling case takes the same form, namely

Mon
PV =MPS. (6)

Thus, no matter whether PS-PS coupling or the PS-PV
coupling is employed, the yielded decay amplitudes would
be exactly the same.

It can further be verified that when the intermediate
nucleon is off-shell, the decay amplitude of fig. 3 in the
PS-PS coupling case still takes the same form as in the
on-shell case:

Moff
PS =MPS, (7)

but in the PS-PV coupling case, it has additional terms:

Moff
PV,a =

igNN̄π
2m

ū(p)γ5

×
[

FMγ
µεµ +

1

2m
F0
(

q − p′
)µ
εµ

]

v
(

p′
)

+MPS,a , (8)

Moff
PV,b =

igNN̄π
2m

ū(p)

×
[

FMγ
µεµ +

1

2m
F0
(

p− q′
)µ
εµ

]

γ5v
(

p′
)

+MPS,b , (9)

and
MPS,a +MPS,b =MPS, (10)

where the subscripts a and b denote the decay ampli-
tudes of fig. 3(a) and fig. 3(b), respectively. Equations (8)
and (9) can also be expressed diagrammatically as in
fig. 4, where the vertices Γa, Γb, ΓPS and ΓPV are Γa =
FMγ

µ + 1
2mF0(q − p′)

µ
, Γb = FMγ

µ + 1
2mF0(p− q′)

µ
,

ΓPS = igNN̄πγ5 and ΓPV = i
2mgNN̄πγ5γµk

µ, respectively.
The total decay amplitude for fig. 3 is then obtained by
summing over eq. (8) and eq. (9):

Moff
PV =Moff

PV,a +Moff
PV,b

=
igNN̄π
2m2

F0ū(p)(p− p′)µεµγ5v
(

p′
)

+MPS (11)

≡ MPV.

It is clear that in the J/ψ → NN̄π process, when
the π-N interaction takes the PS-PV coupling form, the
decay amplitude would receive not only the same contri-
bution from the PS-PS coupling, but also an extra contri-
bution from the contact term. Moreover, the difference of
the decay amplitudes in the PS-PS and PS-PV coupling
cases only relates to |F0|, and is more distinct at a large
value of |F0|.

The differential decay rate can be formulated by sum-
ming over possible spin states of the final nucleon and
anti-nucleon:

dΓPS
(

J/ψ → NN̄π
)

=
2π4

2Mψ
|MPS|2 dΦ3

(

Pψ; p, p
′, k
)

= (2π)
4 2g

2
NN̄π

Mψ

[

|FM |2APS,1+ |F0|2APS,2

+Re
(

F ∗
0 FM
)

APS,3

]

dΦ3

(

Pψ; p, p
′, k
)

, (12)

dΓPV
(

J/ψ → NN̄π
)

=
2π4

2Mψ
|MPV|2 dΦ3

(

Pψ; p, p
′, k
)

=(2π)
4 2g

2
NN̄π

Mψ

[

|FM |2APS,1+|F0|2
(

APS,2+APV,2

)

+Re
(

F ∗
0 FM

)(

APS,3+APV,3

)]

dΦ3

(

Pψ; p, p
′, k
)

, (13)
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with Mψ being the mass of J/ψ and

dΦ3

(

Pψ; p, p
′, k
)

= δ4
(

Pψ − p− p′ − k
)

× d3p

(2π)
3
2p0

d3p′

(2π)
3
2p′0

d3k

(2π)
3
2k0

(14)

being an element of the three-body phase space. The ex-
plicit expressions for APS,i(i = 1, 2, 3) and APV,i(i = 2, 3)
are shown in the appendix. Again, it is found from
eqs. (12) and (13) that the |FM |2-dependent term does
not contribute to the difference between dΓPV and dΓPS.
If |F0| = 0, the differential decay rates in the PS-PS and
PS-PV coupling cases are absolutely identical.

The value of |F0|/|FM | can be determined in the fol-
lowing way [7]. In the realistic calculation, one usually
adopts the electric coupling parameter FE and the mag-
netic coupling parameter FM instead of F0 and FM used
above. F0 can be expressed by

F0 =
4m2

Mψ − 4m2

(

FM − FE
)

. (15)

Then the squared amplitude for J/ψ → pp̄ decay can be
written as

|M|2 = C0

(

1 + α cos2 θ
)

, (16)

with

C0 = m2|FM |2 + 4m2|FE |2,
(17)

α =

[

|FM |2 −
4m2

M2
ψ

|FE |2
]/[

|FM |2 +
4m2

M2
ψ

|FE |2
]

.

By measuring the angular distribution of the J/ψ → pp̄
decay, one obtains α = 0.62 ± 0.11 [8]. Consequently,
|FE |/|FM | = 0.80± 0.14. Assuming

FE
FM

=
|FE |
|FM |

eiδ, (18)

one can easily extract the value of |F0|/|FM | as
F0
FM

=
4m2

M2
ψ − 4m2

[

1− |FE |
|FM |

eiδ
]

. (19)

Taking δ = 0, π2 and π, we have

|F0|
|FM |

=















0.12± 0.08 for δ = 0,

0.74± 0.08 for δ =
π

2
,

1.04± 0.08 for δ = π.

(20)

The effect of the ratio |F0|/|FM | on ΓPS and ΓPV can
be shown by taking |F0|/|FM | = 0, 0.12, 0.74, 1.04 in our
calculation. The branching ratios (BR) of the decay widths
for fig. 3 in the PS-PS and PS-PV cases are1

ΓPS
(

J/ψ → pp̄π0
)

Γ (J/ψ → pp̄)
=



















0.556 for |F0|/|FM | = 0,

0.561 for |F0|/|FM | = 0.12,

0.688 for |F0|/|FM | = 0.74,

0.815 for |F0|/|FM | = 1.04,

(21)

1 The corresponding ratios in ref. [7] are larger than ours due
to their large deviation in the phase space integration.

and

ΓPV
(

J/ψ → pp̄π0
)

Γ (J/ψ → pp̄)
=



















0.556 for |F0|/|FM |=0,

0.529 for |F0|/|FM |=0.12,

0.475 for |F0|/|FM |=0.74,

0.421 for |F0|/|FM |=1.04,

(22)

respectively. Comparing with the empirical ratio [9]

Γ
(

J/ψ → pp̄π0
)

Γ (J/ψ → pp̄)
= 0.51± 0.04, (23)

one can see that the resultant BRs in eqs. (21) and (22) are
very close to the data values. This indicates that the BR of
the J/ψ → NN̄π decay is dominated by the nucleon-pole
diagrams of fig. 3 without including the hadronic form
factor. Of course, the N∗-pole will also contribute. How-
ever, if one used the data of J/ψ → NN̄π decay to study
N∗, one could not get meaningful information until the
nucleon-pole contribution is considered.

One can also find that the difference due to different
πN couplings becomes larger when the |F0|/|FM | ratio
increases. This is because in the PS-PS coupling case,
both the FM -dependent and the F0-dependent term con-
tribute positively, but in the PS-PV coupling case, the
FM -dependent term keeps the same contribution and the
F0-dependent term gives a negative contribution. There-
fore, a large |F0|/|FM | value would make the difference
larger. For instance, with |F0|/|FM | = 1.04, the ratio
ΓPS(J/ψ → pp̄π0)/Γ (J/ψ → pp̄) is almost twice the ratio
ΓPV(J/ψ → pp̄π0)/Γ (J/ψ → pp̄).

2.2 Off-shell effects with various form factors in the
J/ψ → NN̄π decay

Normally, a hadronic form factor is applied to the meson-
baryon-baryon (MBB′) vertices because of the inner
quark-gluon structure of hadrons. It is well known that
form factors play an important role in many physics pro-
cesses, for example, the N -N interaction models [10],
NN scattering [11], πN scattering [12–14], pion photo-
production [15], vector meson photoproduction [16], etc.
However, due to the difficulties in dealing with non-
perturbative QCD (NPQCD) effects, the form factors are
commonly adopted phenomenologically.

The most commonly used form factors for meson-
nucleon-nucleon vertices are the monopole form factor and
the dipole form factor [17]:

F1
(

q2
)

=
Λ2 +m2

Λ2 + q2
, (24)

F2
(

q2
)

=
Λ4 +m4

Λ4 + q4
, (25)

wherem and q are the mass and the four-momentum of the
intermediate particle, respectively, and Λ is the so-called
cut-off momentum that can be determined by fitting the
experimental data. The monopole form factor is mainly
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Λ

Λ

Λ

Λ

Fig. 5. The momentum-dependence of form factors F1–F5 with different Λ values.

used in the π-N and N -N interactions, while the dipole
one is usually applied to the N -N interaction. The values
of Λ are different process by process. A typical value of
Λ for a monopole form factor in the Bonn potential is in
the region of 1.3–2GeV [10], and for the π-N interaction is
about 1.35 GeV. Frankfurt and Strikman [18] analyzed the
deep inelastic scattering (DIS) of leptons from nucleons
and showed that the DIS data support a πNN monopole
form factor with Λ ≤ 650MeV.

The exponential form factor is also a frequently used
meson-nucleon-nucleon form factor [19],

F3
(

q2
)

= e−|q2−m2|/Λ2

. (26)

The form factor can also take the following form [20,21]:

F4
(

q2
)

=
1

1 + (q2 −m2)
2
/Λ4

. (27)

Moreover, in the study of meson photoproduction,
T.-S.H. Lee et al. [21,22] chose a form factor with the
following form:

F5
(

q
2
)

= exp
[

−
(

q
2 − q

2
0

)

/Λ2
]

, (28)

where q and q0 are the three-momentum vectors of the
intermediate nucleon at the energy

√
s (s = q2) and at the

nucleon-pole position, respectively.
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Fig. 6. The momentum-dependence of form factors F1–F4 with the same value of Λ.

It should be mentioned that all the form factors men-
tioned above are normalized to unity when the intermedi-
ate nucleon is on its mass shell.

To give the readers a comprehensive idea of various
form factors, we plot them with Λ = 0.65, 1.0, 1.5 and
2.0GeV in figs. 5 and 6, respectively. Figure 5 shows
the Λ-dependence of the form factors given above. The
common feature of these form factors is that their high-
momentum-transfer part is even more reduced when the Λ
value becomes smaller. The momentum-dependent behav-
iors of these form factors are quite different with different
Λ values. Figure 6 presents the momentum-dependence of
various form factors. The momentum-dependence of form
factors F2, F3 and F4 is very sensitive to the Λ value, but
that of F1 is not. When the value of Λ becomes smaller,
the difference among the various form factors is more pro-
nounced. For instance, when Λ = 0.65GeV, with increas-
ing q2, F3 reduces much more than F1 does. Since in the
decay processes considered in this paper, the intermediate
nucleon is off-shell, introducing an off-shell form factor
would suppress the off-shell effect of the nucleon, and the
form of the form factor and the value of Λ would affect the
decay amplitude. Therefore, studying the hadronic vertex
form factor can provide a constraint to the data analy-
sis. Moreover, the results of the data fitting can also help
us to choose a proper form factor for the J/ψ → NN̄M
investigation.

Suppose that form factors with same form are applied
on both vertices of the considered decay diagram, respec-
tively. After adding the form factors, eqs. (6), (7) and (12)
can be re-written as

M′
PS= igNN̄πū(p)γ5

×
[

FM

(

/k /ε

2p · k+k2F
2
(

q2
)

− /ε /k

2p′ · k+k2F
2
(

q′2
)

)

+
F0
m

/k

(

p · ε
2p′ · k+k2F

2
(

q′2
)

− p′ · ε
2p · k+k2F

2
(

q2
)

)]

v
(

p′
)

, (29)

and

M′
PV=

igNN̄π
2m

ū(p)

{

FM
[

F 2
(

q2
)

−F 2
(

q′2
)]

/ε+
F0
m

×
[

F 2
(

q′2
)

(p · ε)−F 2
(

q2
)

(p′ · ε)
]

}

γ5v
(

p′
)

+M′
PS , (30)

respectively. The form factor F (q2) can be chosen to be
of one of the forms given in eqs. (24)-(28).

In order to show how sensitive the decay BR is to the
form of the form factor and to the value of Λ, we take Λ =
0.65, 1.0, 1.5 and 2.0GeV and |F0|/|FM | = 0.12 ± 0.08,
and calculate the BR Γ (J/ψ → pp̄π0)/Γ (J/ψ → pp̄)
with all kinds of form factors shown above. The results
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Table 1. The BR Γ (J/ψ → pp̄π0)/Γ (J/ψ → pp̄) (%) with various form factors.

F.F. πN Λ = 0.65GeV Λ = 1.0GeV Λ = 1.5GeV Λ = 2.0GeV

coupling

F1 PS 3.95(3.73–4.18) 6.81(6.45–7.20) 12.69(12.05–13.38) 19.35(18.40–20.37)

PV 2.79(2.77–2.82) 5.04(5.01–5.07) 9.96(9.91–9.98) 15.89(15.83–15.91)

F2 PS 0.34(0.32–0.37) 1.23(1.15–1.31) 7.21(6.82–7.64) 19.64(18.66–20.71)

PV 0.20(0.19–0.21) 0.76(0.75–0.78) 5.07(5.02–5.11) 15.50(15.45–15.53)

F3 PS 0.07(0.06–0.07) 1.09(1.02–1.16) 5.83(5.51–6.18) 13.29(12.61–14.02)

PV 0.04(0.03–0.04) 0.66(0.64–0.68) 4.07(4.03–4.10) 10.23(10.18–10.25)

F4 PS 0.23(0.22–0.25) 3.35(3.15–3.58) 15.03(14.23–15.89) 29.70(29.68–31.26)

PV 0.13(0.12–0.13) 2.08(2.04–2.14) 10.98(10.92–11.04) 24.30(24.23–24.31)

F5 PS 2.39(2.25–2.54) 10.25(9.71–10.83) 23.91(22.75–25.16) 34.01(32.40–35.72)

PV 2.33(2.16–2.81) 9.28(9.37–9.33) 21.98(22.12–21.85) 31.57(31.63–31.44)

are tabulated in table 1, where the numbers in paren-
theses correspond to the lower and the upper limits of
|F0|/|FM |, respectively. From table 1, one can see that
no matter which form factor is employed, the difference
between ΓPV(J/ψ → pp̄π0) and ΓPS(J/ψ → pp̄π0) is gen-
erally larger than that in the case without form factor. For
instance, when Λ = 1.0GeV,

ΓPV
(

J/ψ → pp̄π0
)

ΓPS(J/ψ → pp̄π0)
=



























0.74 for F1,

0.618 for F2,

0.606 for F3,

0.621 for F4,

0.905 for F5,

(31)

and the corresponding ratio without form factors is

ΓPV
(

J/ψ → pp̄π0
)

ΓPS(J/ψ → pp̄π0)
' 0.940. (32)

It means that the introduced form factor suppresses
the contribution in the large-momentum-transfer region,
and consequently, enlarges the off-shell effects in the PS-
PS and PS-PV coupling cases to a different extent. For a
specific form factor, when the Λ value reduces, the curve
of the form factor bends towards the lower momentum
direction. It further suppresses the contribution in the
high-momentum-transfer region, enlarges the off-shell ef-
fect and reduces the nucleon-pole contribution. For in-
stance, with form factor F5, when Λ reduces from 2.0GeV

to 0.65GeV, the BR ΓPV(J/ψ→pp̄π0)
Γ (J/ψ→pp̄) decreases from 31.57%

to 2.33%. The Λ-dependence of the BR differs in the dif-
ferent form factor cases. For the same amount of Λ value
change, the BR with F1 decreases by about 1/5, but the
BR with F3 drops to about 1/256. The BR with a larger
Λ value is more pronounced, and the nucleon-pole con-
tribution is important. On the contrary, the nucleon-pole
contribution by using a small Λ value can be ignored.

The BRs with different form factors but the same
Λ value are quite different. For example, when Λ =
0.65GeV, the BRs with F3 and F1 in the PS-PV coupling
case are about 0.04% and 2.79%, respectively. The latter is

about 70 times larger than the former one. Anyway, these
BRs are negligibly smaller than the data value of 51%.
However, when Λ is large, the difference between different
form factor cases becomes very small; consequently, the
contribution from the high-momentum part is not much
suppressed, the resultant BRs in both PS-PS and PS-PV
cases are close to each other and are comparable with
the data. For instance, when Λ = 2.0GeV, the maximum
range of the BR change is from 10.23% to 34.01%.

Since it is not sure which form factor is suitable for the
considered decay processes, we cannot conclude whether
the nucleon pole is dominantly responsible for the BR
of the J/ψ → NN̄π decay. Now, we would show how
much the nucleon-pole diagram contributes to the BR of
J/ψ → NN̄π decay, when a form factor used in a similar
process is adopted. It should be mentioned that although
all the form factors shown above are the NNπ vertex form
factors, the particle which the momentum variable cor-
responds to is different case by case. In the N -N inter-
action, the form factor is π-momentum dependent, and
in the π-N interaction, in the pion photoproduction, and
in the J/ψ → NN̄π decay, it is intermediate–nucleon-
momentum dependent. Only in the case in which the form
factor depends on the four-momenta of the three inter-
acting particles [12], a unified form factor with the same
proper parameter Λ can possibly be applied to all men-
tioned processes. We summarize in table 2 part of form
factors whose momentum dependence is similar with re-
spect to the J/ψ → NN̄π decay and whose Λ value has
well been determined by the πN scattering or by the pion
photoproduction

With these form factors, we re-calculate the BR
Γ (J/ψ → pp̄π0)/Γ (J/ψ → pp̄). The resultant BRs with
|F0|/|FM | = 0.12 are

Γ
(

J/ψ → pp̄π0
)

Γ (J/ψ → pp̄)
=











0.0808 for F1,

0.0465 for F4,

0.0967 for F5.

(33)
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Table 2. πNN form factors frequently used in the literatures.

πN Coupling Coupling Constant F.F. Λ (cut-off) Reference

PV f2
πNN/4π = 0.0778 F1(q

2) 1350MeV [14]

PV g2
πNN/4π = 14.3 F4(q

2) 1116.6MeV [13]

PV f2
πNN/4π = 0.0778 F4(q

2) 1200MeV [14]

PS g2
πNN/4π = 14 F5(q

2) 1000MeV [21]

Fig. 7. The Dalitz plot and the invariant pπ0 mass distribution of the J/ψ → pp̄π0 decay with the form factors F1, F4, and F5.
The solid curve, the dot-dashed curve and the starred curve in the invariant-mass distribution figure correspond to the form
factors F1, F4, and F5, respectively.

And those with |F0|/|FM | = 1.04 are

Γ
(

J/ψ → pp̄π0
)

Γ (J/ψ → pp̄)
=











0.0735 for F1,

0.0524 for F4,

0.1636 for F5.

(34)

Comparing with the results in table 1, one finds that the
resultant BRs do not differ as much as those in table 1,
but there is still visible difference.

Although the magnitude of the BR is much smaller
than the data values, it can still be used to select a proper
form factor for the J/ψ → NN̄π decay. To fulfil this goal,
in terms of a Monte Carlo simulation, we calculate the
Dalitz plot and the invariant pπ0 mass distribution of the
J/ψ → pp̄π0 decay with the form factors F1, F4, and F5,
respectively. They are shown in fig. 7. Comparing these
figures with the data, one should be able to find out the
most suitable form factor for the J/ψ → pp̄π0 decay.

2.3 Nucleon-pole contributions in the J/ψ → pp̄η and
J/ψ → pp̄η′ decays

The corresponding Feynman diagrams for the J/ψ → pp̄η
and pp̄η′ decays are shown in fig. 8. The same formulae for
the J/ψ → pp̄π0 decay can be applied to the J/ψ → pp̄η

Fig. 8. Proton-pole diagrams for J/ψ → pp̄η and J/ψ → pp̄η′

decays.

and J/ψ → pp̄η′ decays, but replacing gNN̄π with gNN̄η
or gNN̄η′ , because π, η and η′ are all pseudoscalar mesons.
The values of gNN̄η and gNN̄η′ can be chosen according
to the following relations [7]:

(gηNN/gπNN )
2
= 3.90625× 10−3,

(35)
(gη′NN/gπNN )

2
= 2.5× 10−3.

And we take |F0|/|FM | = 0, 0.12, 0.74 and 1.04
in our calculation. The decay ratios Γ (J/ψ →
pp̄η)/Γ (J/ψ → pp̄) and Γ (J/ψ → pp̄η′)/Γ (J/ψ → pp̄)
from the proton-pole contribution without considering
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Table 3. Branching ratio Γ (J/ψ → pp̄η)/Γ (J/ψ → pp̄) with form factors, with |F0|/|FM | = 0.12.

F.F. πη Λ = 0.65GeV Λ = 1.0GeV Λ = 1.5GeV Λ = 2.0GeV
coupling

F1 PS 9.61× 10−6 2.24× 10−5 5.92× 10−5 1.14× 10−4

PV 7.26× 10−6 1.74× 10−5 4.77× 10−5 9.49× 10−5

F2 PS 6.34× 10−8 5.04× 10−7 1.31× 10−5 8.90× 10−5

PV 4.15× 10−8 3.35× 10−7 9.26× 10−6 6.91× 10−5

F3 PS 2.63× 10−11 1.54× 10−7 1.00× 10−5 5.31× 10−5

PV 1.63× 10−11 1.01× 10−7 7.02× 10−6 4.09× 10−5

F4 PS 1.77× 10−9 6.77× 10−7 3.40× 10−5 1.63× 10−4

PV 1.11× 10−9 4.37× 10−7 2.39× 10−5 1.29× 10−4

F5 PS 7.06× 10−7 2.64× 10−5 1.38× 10−4 2.52× 10−4

PV 3.66× 10−6 2.19× 10−5 1.22× 10−4 2.29× 10−4

Table 4. Branching ratio Γ (J/ψ → pp̄η′)/Γ (J/ψ → pp̄) with form factors, with |F0|/|FM | = 0.12.

F.F. πη′ Λ = 0.65GeV Λ = 1.0GeV Λ = 1.5GeV Λ = 2.0GeV
coupling

F1 PS 1.35× 10−7 3.61× 10−7 1.16× 10−6 2.59× 10−6

PV 1.14× 10−7 3.09× 10−7 1.01× 10−6 2.28× 10−6

F2 PS 1.99× 10−10 1.96× 10−9 9.94× 10−8 1.33× 10−6

PV 1.53× 10−10 1.52× 10−9 7.93× 10−8 1.11× 10−6

F3 PS 4.78× 10−18 5.99× 10−11 6.40× 10−8 7.76× 10−7

PV 3.62× 10−18 4.16× 10−11 4.99× 10−8 6.50× 10−7

F4 PS 1.70× 10−12 1.22× 10−9 2.28× 10−7 2.63× 10−6

PV 1.26× 10−12 9.15× 10−10 1.79× 10−7 2.21× 10−6

F5 PS 8.13× 10−10 2.67× 10−7 2.91× 10−6 6.75× 10−6

PV 1.23× 10−7 2.32× 10−7 2.50× 10−6 6.05× 10−6

form factors are

ΓPS(J/ψ → pp̄η)

Γ (J/ψ → pp̄)
=



















5.48× 10−4 for |F0|/|FM | = 0,

5.63× 10−4 for |F0|/|FM | = 0.12,

6.91× 10−4 for |F0|/|FM | = 0.74,

8.19× 10−4 for |F0|/|FM | = 1.04,

(36)

ΓPV(J/ψ → pp̄η)

Γ (J/ψ → pp̄)
=



















5.48× 10−4 for |F0|/|FM | = 0,

5.26× 10−4 for |F0|/|FM | = 0.12,

4.69× 10−4 for |F0|/|FM | = 0.74,

4.12× 10−4 for |F0|/|FM | = 1.04,

(37)

and

ΓPS
(

J/ψ → pp̄η′
)

Γ (J/ψ → pp̄)
=



















1.93× 10−5 for |F0|/|FM | = 0,

1.99× 10−5 for |F0|/|FM | = 0.12,

2.45× 10−5 for |F0|/|FM | = 0.74,

2.91× 10−5 for |F0|/|FM | = 1.04,

(38)

ΓPV
(

J/ψ → pp̄η′
)

Γ (J/ψ → pp̄)
=



















1.93× 10−5 for |F0|/|FM | = 0,

1.87× 10−5 for |F0|/|FM | = 0.12,

1.70× 10−5 for |F0|/|FM | = 0.74,

1.54× 10−5 for |F0|/|FM | = 1.04.

(39)

Again, the difference of the BRs between PS-PS and
PS-PV couplings decreases when the ratio |F0|/|FM |
decreases. Comparing with the empirical data Γ (J/ψ →
pp̄η)/Γ (J/ψ → pp̄) = 0.98 ± 0.09 and Γ (J/ψ →
pp̄η′)/Γ (J/ψ → pp̄) = 0.42 ± 0.19 [9], one finds that the
calculated BRs are all smaller by 0.1% with respect to
the data. This is because in these two decays, the inter-
mediate nucleon is largely off-shell. We also tabulate the

BRs Γ (J/ψ→pp̄η)
Γ (J/ψ→pp̄) and Γ (J/ψ→pp̄η′)

Γ (J/ψ→pp̄) with various πNN form

factors in tables 3 and 4, respectively. Because the form
factor further reduces the proton-pole contribution in the
high-momentum region, the resultant BRs are very small.
Therefore, in analyzing the J/ψ → pp̄η and J/ψ → pp̄η′

data, the proton-pole contribution can safely be ignored.
The main contributor for such decays must be some other
diagrams, for instance, the N∗-pole diagram.
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Fig. 9. Proton-pole diagram for the J/ψ → pp̄ω decay.

3 Nucleon-pole contribution in the

J/ψ → pp̄ω decay

The nucleon-pole diagram in the J/ψ → pp̄ω decay is
shown in fig. 9, where the variables in brackets are the
four-momenta of the corresponding particles. The mass of
the ω-meson is 781.94MeV. Due to the heavy mass of ω,
the intermediate nucleon in fig. 9 must be far from the
mass shell.

The ωNN interaction can be written as [7]

HωNN = gωNN N̄(x)γαN(x)ωα(x)

+ i
1

4m
fωNN N̄(x)

[

γµ, γν
]

N(x)∂µων(x). (40)

The vector coupling constant gωNN and tensor coupling
constant fωNN are

g2ωpp/4π ' 6.3, (41)

fωpp =
(

µp + µn
)

gωpp , (42)

respectively, with the following anomalous magnetic mo-
ments of proton and neutron:

µp = 1.7928µN , µn = −1.9131µN . (43)

A simple manipulation gives

fωpp ' −0.12gωpp . (44)

Therefore, the ωNN interaction is mainly a vector cou-
pling.

Similar to what Y. Oh and T.-S.H. Lee did [15,23] in
the vector meson photoproduction study, we only take the
vector coupling in the J/ψ → pp̄ω calculation

H ′
ωNN = gωNN N̄(x)γαN(x)ωα(x). (45)

Performing a similar derivation in the J/ψ → pp̄π0 case
and using the properties

P βψ εβ
(

Pψ, λ
)

= 0, kαeα
(

k, λ′
)

= 0, (46)

where εβ(Pψ, λ) and eα(k, λ
′) are polarization vectors of

J/ψ and ω, respectively, we get the total decay amplitude
for fig. 9:

M=gωpp ū(p, s)

{

FM

[

2p · e+/e/k
2p · k+k2 /ε−/ε

2p′ · e+/k/e
2p′ · k+k2

]

−F0
m

[

(

p′ ·ε
) 2p· e+/e/k
2p · k+k2 +(p·ε) 2p

′ · e+/k/e
2p′ · k+k2

]}

v
(

p′, s′
)

, (47)

Table 5. The branching ratio Γ (J/ψ → pp̄ω)/Γ (J/ψ → pp̄)
with form factor.

F.F. Λ = 0.65GeV Λ = 1.0GeV Λ = 1.5GeV Λ = 2.0GeV

F1 1.48× 10−3 3.83× 10−3 1.16× 10−2 2.49× 10−2

F2 3.34× 10−6 3.15× 10−5 1.35× 10−3 1.48× 10−2

F3 5.03× 10−12 2.45× 10−6 9.40× 10−4 8.66× 10−3

F4 3.83× 10−8 2.43× 10−5 3.27× 10−3 2.88× 10−2

F5 2.02× 10−5 3.28× 10−3 2.86× 10−2 6.18× 10−2

and the differential decay width by summing over possible
spin states of the initial and final particles

dΓ (J/ψ → pp̄ω) =
2π4

2Mψ
|M|2 dΦ3

(

Pψ; p, p
′, k
)

. (48)

Taking |F0|/|FM | = 0, 0.12, 0.74 and 1.04, we obtain
the branching ratio

Γ (J/ψ → pp̄ω)

Γ (J/ψ → pp̄)
=



















0.169 for |F0|/|FM | = 0,

0.168 for |F0|/|FM | = 0.12,

0.171 for |F0|/|FM | = 0.74,

0.175 for |F0|/|FM | = 1.04.

(49)

In comparison with the data 0.61 ± 0.12 of [9] one can
see that without considering form factors, the proton-pole
diagram provides a rather important contribution to the
width of the J/ψ → pp̄ω decay. As mentioned above,
because ω is relatively heavy, the intermediate proton
should be far from mass shell, the terms with high power
of momentum in the amplitude make the amplitude-vs.-
momentum curve bend upward and diverge from the nor-
mal Breit-Wigner form. This non-physical feature of the
amplitude in the high-momentum region should be sup-
pressed by adding off-shell form factors.

After including the form factor, the decay amplitude
becomes

M′ = gωpp ū(p, s)

{

FM

[

2p · e+ /e/k

2p · k + k2
F 2
(

q2
)

/ε

− /ε
2p′ · e+ /k/e

2p′ · k + k2
F 2
(

q′2
)

]

− F0
m

[

(

p′ · ε
) 2p · e+ /e/k

2p · k + k2
F 2
(

q2
)

+(p · ε) 2p′ · e+ /k/e

2p′ · k + k2
F 2
(

q′2
)

]}

v
(

p′, s′
)

, (50)

where the form factor F (q2) can be any one of those
given in eqs. (24)-(28). Taking |F0|/|FM | = 0.12 again,
we obtain the BRs Γ (J/ψ → pp̄ω)/Γ (J/ψ → pp̄).
They are tabulated in table 5. From this table, one
finds that the proton-pole contribution is sensitive to
the form of the form factor and to the value of Λ.
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Fig. 10. The Dalitz plot and the pω invariant-mass distribution in J/ψ → pp̄ω decay (Λ = 0.65GeV). The solid, dashed,
dotted, dot-dashed and starred curves denote the cases with F1, F2, F3, F4 and F5, respectively.

Fig. 11. The Dalitz plot and the pω invariant-mass distribution in J/ψ → pp̄ω decay (Λ = 1.0GeV). The solid, dashed, dotted,
dot-dashed and starred curves denote the cases with F1, F2, F3, F4 and F5, respectively.
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Fig. 12. The Dalitz plot and the pω invariant-mass distribution in J/ψ → pp̄ω decay (Λ = 1.5GeV). The solid, dashed, dotted,
dot-dashed and starred curves denote the cases with F1, F2, F3, F4 and F5, respectively.

Fig. 13. The Dalitz plot and the pω invariant-mass distribution in J/ψ → pp̄ω decay (Λ = 2.0 GeV). The solid, dashed, dotted,
dot-dashed and starred curves denote the cases with F1, F2, F3, F4 and F5, respectively.
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The most Λ-sensitive form factor is F3, with which the
BR changes to almost 108 times as much when Λ increases
from 0.65GeV to 2.0GeV. The most Λ-insensitive one is
F1, with which the BR only increases to 17 times as much.
Moreover, when Λ is small, the BR is more sensitive to the
form of the form factor. For instance, with Λ = 0.65GeV,
the resultant BRs from various form factors have almost a
109 times difference. But with Λ = 2.0GeV, the difference
is just about 3 times. The reason is the same as that in the
J/ψ → pp̄π0 case. We also provide the relevant Dalitz plot
and the invariant-mass distribution of pω in figs. 10-13.
The Dalitz plot in these figures shows that the contribu-
tions of the proton-pole diagram in the high-momentum
region are evidently suppressed. This agrees with our con-
jecture mentioned at the beginning of this section.

Furthermore, comparing with the data 0.61 ± 0.12 of
PDG [9], we find that the resultant BRs are generally less
by 10%. This indicates that in the J/ψ → pp̄ω decay, the
proton-pole contribution is not so important. To explain
the empirical data, there must be certain contributions
from other diagrams such as the N ∗-pole diagram.

4 Conclusion

J/ψ → NN̄M decay is an ideal process to study the N ∗

spectrum. As intermediate states, nucleon and N ∗ can all
contribute to the decay BR. In the J/ψ → NN̄M decay
data analysis, the nucleon-pole contribution would play an
important role of background. Understanding this contri-
bution would enable us to get a more accurate and more
reliable information on N∗. In this paper, we study the
nucleon-pole contribution by employing PS-PS and PS-
PV πNN̄ vertex couplings and various vertex form factors.

According to the equivalent theorem [24], the PS-PS
and PS-PV couplings of the π-N interaction are equiva-
lent, when the intermediate nucleon is on-shell. Namely,
the decay amplitudes with the PS-PS and PS-PV coupling
vertices are exactly the same. But, when the intermediate
nucleon is off-shell, their decay amplitudes are different.
The amplitude with the PS-PS coupling vertex keeps the
same form as in the on-shell case, and the amplitude with
the PS-PV coupling vertex has an additional term which
describes a four-particle contact interaction. It seems that
the PS-PV coupling contains the PS-PS coupling. In fact,
many authors claimed that using the PS-PV coupling only
is good enough in describing the π-N interaction and the
meson photoproduction [13–15,25,26]. But some authors
believed that a mixed coupling

gπNNτi

[

λγ5 − (1− λ)/p− /p
′

2m
γ5

]

, (51)

where λ is a mixing parameter, is more appropriate [11,
12,27]. The value of λ can be extracted by data fitting.
For an example, Gross, Orden and Holinde [11] obtained
λ ∼= 0.22 by fitting the N -N data in a one-boson ex-
change (OBE) model, Goudsmit, Leisi and Mastinos found
λ ∼= 0.24 by analyzing the πN scattering data at the tree

diagram level [27], Gross and Surya got λ ∼= 0.25 by fitting
the πN scattering data [12]. Anyway, the obtained λ value
shows that in the mixed NNπ vetex, the PS-PS coupling
only occupies a small portion.

Because the PS-PS and PS-PV couplings are not
equivalent when the intermediate nucleon is off-shell,
the resultant nucleon-pole contributions to Γ (J/ψ →
pp̄π0)/Γ (J/ψ → pp̄) in these cases are different. The
smaller the |F0|/|FM | ratio in the J/ψ → pp̄ decay is, the
closer the BRs in the PS-PS and PS-PV cases are. For in-
stance, when |F0|/|FM | = 0.12, the mentioned difference is
quite small, and the ratio ΓPV(J/ψ → pp̄π0)/ΓPS(J/ψ →
pp̄π0) is about 0.94. The resultant BR is about 0.53. Com-
paring with the data value of 0.51, one can claim that the
proton-pole diagram is the main contributor responsible
for the BR of the J/ψ → pp̄π0 decay.

On the other hand, the hadron has its own inner struc-
ture. To be realistic, one has to introduce vertex form fac-
tors. After considering the form factors, the mentioned BR
difference is enlarged. The size of the change depends on
the form of the form factor and its Λ value. In general, the
smaller the Λ is, the large the difference will be. When Λ is
small, say Λ = 0.65GeV, the resultant BR of J/ψ → pp̄π0

depends strongly on the form of the form factor. When the
form factor takes an exponential form or a dipole form, it
highly suppresses the contribution in the high-momentum
part, and consequently, the resultant BR reduces to 0.08%
or 0.4% of the value obtained without form factor. When
Λ is large, say Λ = 2.0GeV, all the form factors become
very similar to each other, the form factor curves do not
decrease too much, and then the resultant BRs are also
very similar and are not small. They are about 20% to
30% of the value without form factor.

The Λ-sensitivity of the various form factors is also
different. The exponential form factor is the most sensitive
one. When the Λ value changes from 0.65GeV to 2.0GeV,
the BR changes about 256 times as much. But for the most
insensitive one (the monopole form factor), the change is
only about 6 times as much.

Moreover, if one adopts a form factor that is frequently
used in explaining the πN scattering and the pion pho-
toproduction data, the proton-pole contribution is about
10–20% of the J/ψ → pp̄π0 data. Thus, the proton-pole
diagram must be considered.

The similar results for the J/ψ → pp̄η and pp̄η′ are
studied in the same manner. Taking |F0|/|FM | = 0.12 and
without considering the form factor, the resultant BRs
from the proton-pole diagram are 5× 10−4 and 2× 10−4,
for the J/ψ → pp̄η and pp̄η′ decays, respectively. In com-
parison with the data values of 0.98 and 0.42, they are
all less by 0.1%. Taking the form factor into account, the
resultant BRs are further reduced. Therefore, in analyz-
ing the J/ψ → pp̄η and pp̄η′ decay data, the contribution
from the proton-pole diagram can safely be ignored.

The proton-pole diagram contribution to the J/ψ →
pp̄ω decay is analyzed too. The difference between the
resultant BRs by using vector coupling and mixed cou-
pling is only about 3%. Comparing with the data value
of 0.61, without considering the form factor and with
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|F0|/|FM | = 0.12, the BR obtained from the proton-pole
diagram is about 0.168, which is about 28% of the data
value. When the form factor is considered, the largest ob-
tained BR is less than 10% of the data value. This indi-
cates that other diagrams such as the N ∗-pole diagram
may be mainly responsible for the J/ψ → pp̄ω decay.

Finally, it is worthy of note that through J/ψ decay
data fitting, it is possible to select an appropriate form
factor for the J/ψ → NN̄M decay.
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Appendix A

In this appendix, we give the explicit expressions of
APS,i(i = 1, 2, 3) and APV,i(i = 2, 3) appeared in eqs. (12)
and (13),

APS,1 =
(

m2 + p · p′
)[(

a2 − b2
)

(ε · k)2 + b2ε2k2
]

− 2ab(ε · k)
[

(ε · p)
(

p′ · k
)

−
(

ε · p′
)

(p · k)
]

− 2b2
[

ε2(p · k)
(

p′ · k
)

− (ε · k)
(

ε · p′
)

(p · k)

− (ε · k)(ε · p)
(

p′ · k
)

+ k2(ε · p)
(

ε · p′
)]

, (52)

APS,2 =
1

m2

[(

m2 − p · p′
)

k2 + 2(p · k)
(

p′ · k
)]

×
[

p′ · ε
2p · k + k2

− p · ε
2p′ · k + k2

]2

, (53)

APS,3 = 4k2
[

p′ · ε
2p · k + k2

− p · ε
2p′ · k + k2

]2

, (54)

APV,2=
1

m2

(

p · ε−p′ · ε
)

(

p′ · ε
2p · k+k2−

p · ε
2p′ · k+k2

)

×
(

p · k+p′ · k
)

+
1

4m4

(

m2+p · p′
)(

p · ε−p′ · ε
)2
, (55)

APV,3 =
1

m2

(

p · ε− p′ · ε
){

a
(

m2 + p · p′
)

(k · ε)

+ b
[(

p′ · ε
)

(p · k)− (p · ε)
(

p′ · k
)]}

, (56)

where we have set for simplicity

a =
1

2p · k + k2
− 1

2p′ · k + k2
, (57)

b =
1

2p · k + k2
+

1

2p′ · k + k2
. (58)
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